add logs
This commit is contained in:
@@ -1,6 +1,9 @@
|
||||
import time
|
||||
import statistics
|
||||
import threading
|
||||
import pandas as pd
|
||||
import os
|
||||
from datetime import datetime
|
||||
from tkinter import messagebox, ttk
|
||||
|
||||
class CalibrationFrame(ttk.Frame):
|
||||
@@ -19,6 +22,23 @@ class CalibrationFrame(ttk.Frame):
|
||||
self.std_label = ttk.Label(self, text="Standard Deviation: Not calculated")
|
||||
self.std_label.pack(pady=5)
|
||||
|
||||
self.drift_label = ttk.Label(self, text="Drift: Not calculated")
|
||||
self.drift_label.pack(pady=5)
|
||||
|
||||
# Calibration name input
|
||||
self.name_frame = ttk.Frame(self)
|
||||
self.name_frame.pack(pady=10)
|
||||
|
||||
self.name_label = ttk.Label(self.name_frame, text="Calibration Name:")
|
||||
self.name_label.pack(side='left', padx=(0, 5))
|
||||
|
||||
self.name_entry = ttk.Entry(self.name_frame, width=25)
|
||||
self.name_entry.pack(side='left', padx=(0, 5))
|
||||
self.name_entry.insert(0, self.generate_default_name()) # Default name
|
||||
|
||||
self.auto_name_button = ttk.Button(self.name_frame, text="Auto", command=self.generate_auto_name, width=6)
|
||||
self.auto_name_button.pack(side='left')
|
||||
|
||||
self.calibrate_button = ttk.Button(self, text="Start Calibration", command=self.start_calibration)
|
||||
self.calibrate_button.pack(pady=10)
|
||||
|
||||
@@ -39,6 +59,11 @@ class CalibrationFrame(ttk.Frame):
|
||||
messagebox.showerror("Error", "Please connect to device first!")
|
||||
return
|
||||
|
||||
# Get calibration name
|
||||
calibration_name = self.name_entry.get().strip()
|
||||
if not calibration_name:
|
||||
calibration_name = "Unnamed Calibration"
|
||||
|
||||
# Start calibration routine
|
||||
self.calibration_in_progress = True
|
||||
self.calibrate_button.config(state='disabled')
|
||||
@@ -46,7 +71,7 @@ class CalibrationFrame(ttk.Frame):
|
||||
|
||||
# Show initial prompt
|
||||
result = messagebox.askokcancel(
|
||||
"Calibration Procedure",
|
||||
f"Calibration Procedure - {calibration_name}",
|
||||
"Step 1: Remove all weights from the scale and press OK to continue."
|
||||
)
|
||||
|
||||
@@ -62,19 +87,19 @@ class CalibrationFrame(ttk.Frame):
|
||||
|
||||
# Show second prompt
|
||||
result = messagebox.askokcancel(
|
||||
"Calibration Procedure",
|
||||
f"Calibration Procedure - {calibration_name}",
|
||||
"Step 2: Place the 100g calibration weight on the scale and press OK to start measurement."
|
||||
)
|
||||
|
||||
if not result:
|
||||
self.calibration_in_progress = False
|
||||
self.calibrate_button.config(state='normal')
|
||||
self.status_label.config(text="Calibration cancelled")
|
||||
self.status_label.config(text=f"Calibration '{calibration_name}' cancelled")
|
||||
return
|
||||
|
||||
# Start measurement thread
|
||||
try:
|
||||
self.status_label.config(text="Collecting calibration data (30 seconds)...")
|
||||
self.status_label.config(text=f"Collecting data for '{calibration_name}' (30 seconds)...")
|
||||
|
||||
# Collect data for 30 seconds
|
||||
start_time = time.time()
|
||||
@@ -98,44 +123,227 @@ class CalibrationFrame(ttk.Frame):
|
||||
messagebox.showerror("Error", "No readings collected. Check device connection.")
|
||||
self.calibration_in_progress = False
|
||||
self.calibrate_button.config(state='normal')
|
||||
self.status_label.config(text="Calibration failed")
|
||||
self.status_label.config(text=f"Calibration '{calibration_name}' failed")
|
||||
return
|
||||
|
||||
# Calculate statistics
|
||||
mean_reading = statistics.mean(calibration_readings)
|
||||
std_reading = statistics.stdev(calibration_readings) if len(calibration_readings) > 1 else 0
|
||||
|
||||
# Calculate overall drift during the 30-second readout
|
||||
drift_calculation = self.calculate_drift(calibration_readings)
|
||||
overall_drift = drift_calculation['overall_drift']
|
||||
drift_rate = drift_calculation['drift_rate']
|
||||
|
||||
# Calculate calibration factor (100g / mean_reading)
|
||||
calibration_factor = 100.0 / mean_reading
|
||||
|
||||
# Set calibration factor in serial reader - try multiple ways
|
||||
self.serial_reader.calib_factor = calibration_factor
|
||||
|
||||
# Save calibration data to CSV log
|
||||
self.save_calibration_log(calibration_name, calibration_readings, mean_reading,
|
||||
std_reading, overall_drift, drift_rate, calibration_factor)
|
||||
|
||||
# Save individual readings to separate CSV file
|
||||
readings_file = self.save_individual_readings(calibration_name, calibration_readings)
|
||||
|
||||
# Update UI
|
||||
self.status_label.config(text="Calibration complete!")
|
||||
self.status_label.config(text=f"Calibration '{calibration_name}' complete!")
|
||||
self.calibration_factor_label.config(text=f"Calibration Factor: {calibration_factor:.2f}")
|
||||
self.std_label.config(text=f"Standard Deviation: {std_reading:.2f} (raw units)")
|
||||
self.drift_label.config(text=f"Drift: {overall_drift:.2f} units ({drift_rate:.2f} units/sec)")
|
||||
|
||||
# Show results
|
||||
readings_file_msg = f"Individual readings saved to: {os.path.basename(readings_file)}" if readings_file else "Individual readings save failed"
|
||||
|
||||
messagebox.showinfo(
|
||||
"Calibration Complete",
|
||||
f"Calibration successful!\n\n"
|
||||
f"Calibration Complete - {calibration_name}",
|
||||
f"Calibration '{calibration_name}' successful!\n\n"
|
||||
f"Samples collected: {len(calibration_readings)}\n"
|
||||
f"Mean reading: {mean_reading:.2f} (raw units)\n"
|
||||
f"Standard deviation: {std_reading:.2f} (raw units)\n"
|
||||
f"Overall drift: {overall_drift:.2f} units ({drift_rate:.2f} units/sec)\n"
|
||||
f"Calibration factor: {calibration_factor:.2f}\n\n"
|
||||
f"The scale is now calibrated for 100g."
|
||||
f"The scale is now calibrated for 100g.\n\n"
|
||||
f"Data saved to:\n"
|
||||
f"• Summary: calib_logs.csv\n"
|
||||
f"• {readings_file_msg}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
messagebox.showerror("Error", f"Calibration failed: {str(e)}")
|
||||
self.status_label.config(text="Calibration failed")
|
||||
messagebox.showerror("Error", f"Calibration '{calibration_name}' failed: {str(e)}")
|
||||
self.status_label.config(text=f"Calibration '{calibration_name}' failed")
|
||||
|
||||
finally:
|
||||
self.calibration_in_progress = False
|
||||
self.calibrate_button.config(state='normal')
|
||||
self.progress_bar['value'] = 0
|
||||
|
||||
def calculate_drift(self, readings):
|
||||
"""
|
||||
Calculate the overall drift during the measurement period.
|
||||
|
||||
Args:
|
||||
readings: List of measurement readings collected over time
|
||||
|
||||
Returns:
|
||||
dict: Contains overall_drift (difference between end and start)
|
||||
and drift_rate (drift per second)
|
||||
"""
|
||||
if len(readings) < 2:
|
||||
return {'overall_drift': 0.0, 'drift_rate': 0.0}
|
||||
|
||||
# Calculate drift using linear regression to find the trend
|
||||
n = len(readings)
|
||||
x_values = list(range(n)) # Time indices
|
||||
y_values = readings
|
||||
|
||||
# Simple linear regression: y = mx + b
|
||||
# Calculate slope (m) which represents the drift rate per sample
|
||||
x_mean = statistics.mean(x_values)
|
||||
y_mean = statistics.mean(y_values)
|
||||
|
||||
numerator = sum((x_values[i] - x_mean) * (y_values[i] - y_mean) for i in range(n))
|
||||
denominator = sum((x_values[i] - x_mean) ** 2 for i in range(n))
|
||||
|
||||
if denominator == 0:
|
||||
slope = 0
|
||||
else:
|
||||
slope = numerator / denominator
|
||||
|
||||
# Overall drift is the difference between the projected end value and start value
|
||||
overall_drift = slope * (n - 1)
|
||||
|
||||
# Convert to drift rate per second (assuming 30 seconds measurement duration)
|
||||
measurement_duration = 30.0 # seconds
|
||||
drift_rate_per_second = overall_drift / measurement_duration
|
||||
|
||||
# Alternative simple calculation: difference between first and last values
|
||||
simple_drift = readings[-1] - readings[0]
|
||||
|
||||
return {
|
||||
'overall_drift': overall_drift,
|
||||
'drift_rate': drift_rate_per_second,
|
||||
'simple_drift': simple_drift,
|
||||
'slope': slope
|
||||
}
|
||||
|
||||
def save_calibration_log(self, calibration_name, calibration_readings, mean_reading,
|
||||
std_reading, overall_drift, drift_rate, calibration_factor):
|
||||
"""
|
||||
Save calibration data to calib_logs.csv using pandas
|
||||
|
||||
Args:
|
||||
calibration_name: Name of the calibration run
|
||||
calibration_readings: List of all raw readings
|
||||
mean_reading: Mean of the readings
|
||||
std_reading: Standard deviation of the readings
|
||||
overall_drift: Overall drift during measurement
|
||||
drift_rate: Drift rate per second
|
||||
calibration_factor: Calculated calibration factor
|
||||
"""
|
||||
try:
|
||||
# Create the calibration data record
|
||||
timestamp = datetime.now()
|
||||
|
||||
# Create a record for the summary data
|
||||
calibration_record = {
|
||||
'timestamp': timestamp.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'calibration_name': calibration_name,
|
||||
'sample_count': len(calibration_readings),
|
||||
'mean_reading': round(mean_reading, 4),
|
||||
'std_deviation': round(std_reading, 4),
|
||||
'overall_drift': round(overall_drift, 4),
|
||||
'drift_rate_per_sec': round(drift_rate, 6),
|
||||
'calibration_factor': round(calibration_factor, 4),
|
||||
'min_reading': round(min(calibration_readings), 4),
|
||||
'max_reading': round(max(calibration_readings), 4),
|
||||
'measurement_duration_sec': 30.0
|
||||
}
|
||||
|
||||
# Create DataFrame with the new record
|
||||
new_record_df = pd.DataFrame([calibration_record])
|
||||
|
||||
csv_file = 'calib_logs.csv'
|
||||
|
||||
# Check if file exists and append, otherwise create new
|
||||
if os.path.exists(csv_file):
|
||||
# Append to existing file
|
||||
new_record_df.to_csv(csv_file, mode='a', header=False, index=False)
|
||||
else:
|
||||
# Create new file with header
|
||||
new_record_df.to_csv(csv_file, mode='w', header=True, index=False)
|
||||
|
||||
print(f"Calibration data saved to {csv_file}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error saving calibration log: {str(e)}")
|
||||
messagebox.showwarning("Warning", f"Could not save calibration log: {str(e)}")
|
||||
|
||||
def save_individual_readings(self, calibration_name, calibration_readings):
|
||||
"""
|
||||
Save individual calibration readings to a separate CSV file in ./logs directory
|
||||
|
||||
Args:
|
||||
calibration_name: Name of the calibration run
|
||||
calibration_readings: List of all raw readings
|
||||
"""
|
||||
try:
|
||||
# Create logs directory if it doesn't exist
|
||||
logs_dir = './logs'
|
||||
if not os.path.exists(logs_dir):
|
||||
os.makedirs(logs_dir)
|
||||
|
||||
# Generate filename with date and calibration name
|
||||
timestamp = datetime.now()
|
||||
date_str = timestamp.strftime("%Y%m%d")
|
||||
time_str = timestamp.strftime("%H%M%S")
|
||||
|
||||
# Clean calibration name for filename (remove invalid characters)
|
||||
clean_name = "".join(c for c in calibration_name if c.isalnum() or c in (' ', '-', '_')).rstrip()
|
||||
clean_name = clean_name.replace(' ', '_')
|
||||
|
||||
filename = f"{date_str}_{clean_name}_{time_str}_readings.csv"
|
||||
filepath = os.path.join(logs_dir, filename)
|
||||
|
||||
# Create DataFrame with individual readings
|
||||
# Add sample number and timestamp for each reading (assuming ~1 reading per second)
|
||||
readings_data = []
|
||||
for i, reading in enumerate(calibration_readings):
|
||||
sample_time = i * (30.0 / len(calibration_readings)) # Distribute over 30 seconds
|
||||
readings_data.append({
|
||||
'sample_number': i + 1,
|
||||
'time_seconds': round(sample_time, 3),
|
||||
'raw_reading': reading,
|
||||
'calibration_name': calibration_name,
|
||||
'timestamp': timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
||||
})
|
||||
|
||||
readings_df = pd.DataFrame(readings_data)
|
||||
|
||||
# Save to CSV
|
||||
readings_df.to_csv(filepath, index=False)
|
||||
|
||||
print(f"Individual readings saved to {filepath}")
|
||||
return filepath
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error saving individual readings: {str(e)}")
|
||||
messagebox.showwarning("Warning", f"Could not save individual readings: {str(e)}")
|
||||
return None
|
||||
|
||||
def generate_default_name(self):
|
||||
"""Generate a default calibration name with timestamp"""
|
||||
from datetime import datetime
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
return f"Calib_{timestamp}"
|
||||
|
||||
def generate_auto_name(self):
|
||||
"""Generate and set a new automatic calibration name"""
|
||||
self.name_entry.delete(0, 'end')
|
||||
self.name_entry.insert(0, self.generate_default_name())
|
||||
|
||||
def reset_calibration(self):
|
||||
"""Reset calibration factor and UI display"""
|
||||
# Reset calibration factor in serial reader
|
||||
@@ -152,5 +360,9 @@ class CalibrationFrame(ttk.Frame):
|
||||
self.status_label.config(text="Ready for calibration")
|
||||
self.calibration_factor_label.config(text="Calibration Factor: Not set")
|
||||
self.std_label.config(text="Standard Deviation: Not calculated")
|
||||
self.current_reading_label.config(text="Current reading: --")
|
||||
self.drift_label.config(text="Drift: Not calculated")
|
||||
self.progress_bar['value'] = 0
|
||||
|
||||
# Reset name to a new auto-generated name
|
||||
self.name_entry.delete(0, 'end')
|
||||
self.name_entry.insert(0, self.generate_default_name())
|
||||
|
||||
Reference in New Issue
Block a user