finish mov_avg
This commit is contained in:
@@ -33,7 +33,7 @@ class Filter:
|
||||
calib_factor = 100. / float(self.calib_entry.get())
|
||||
df = self.device.data
|
||||
|
||||
df = df[df['weights'] < 10e9]
|
||||
df = df[df['weights'] < 10e8]
|
||||
df['timestamps'] -= df['timestamps'].min()
|
||||
|
||||
df['filtered'], df['filtered_calib'] = self.filter(df, calib_factor)
|
||||
|
||||
@@ -1,21 +1,58 @@
|
||||
from tkinter import ttk
|
||||
from statistics import mean
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from .base import Filter
|
||||
from ..gui import Slider
|
||||
from ..config import MOV_AVG_DEFAULTS
|
||||
|
||||
class MovAvg(Filter):
|
||||
|
||||
def init_params(self, toolbar):
|
||||
self.param_map = {
|
||||
"window_size": Slider(toolbar, "Window Size", 1, 100, 10, self.callback),
|
||||
"decimals": Slider(toolbar, "Decimals", 1, 5, 1, self.callback),
|
||||
# "reset_threshold": Slider(self.toolbar, "Reset Threshold", 0.001, 0.1, 0.1, self.update),
|
||||
"window_size": Slider(toolbar, "Window Size", 1, 100,
|
||||
MOV_AVG_DEFAULTS['window_size'],
|
||||
self.callback),
|
||||
"decimals": Slider(toolbar, "Decimals", 1, 5,
|
||||
MOV_AVG_DEFAULTS['decimals'],
|
||||
self.callback),
|
||||
"reset_threshold": Slider(toolbar, "Reset Threshold", 0.01, 1,
|
||||
MOV_AVG_DEFAULTS['reset_threshold'],
|
||||
self.callback, float),
|
||||
"ignore_samples": Slider(toolbar, "Ignore Samples before reset", 1, 10,
|
||||
MOV_AVG_DEFAULTS['ignore_samples'],
|
||||
self.callback)
|
||||
}
|
||||
|
||||
def filter(self, df: pd.DataFrame, calib_factor: float) -> pd.Series:
|
||||
params = self._get_params()
|
||||
mov_avg = df['weights'].rolling(window=int(params['window_size'])).mean()
|
||||
reset_threshold = params['reset_threshold'] / calib_factor
|
||||
|
||||
window = []
|
||||
mov_avg = []
|
||||
ignored_samples = 0
|
||||
|
||||
for w in df['weights']:
|
||||
if len(window) < params['window_size']:
|
||||
window.append(w)
|
||||
mov_avg.append(mean(window))
|
||||
else:
|
||||
out_of_threshold = abs(mov_avg[-1] - w) > reset_threshold
|
||||
if out_of_threshold and\
|
||||
ignored_samples < params['ignore_samples']:
|
||||
ignored_samples += 1
|
||||
mov_avg.append(mov_avg[-1])
|
||||
|
||||
elif out_of_threshold:
|
||||
ignored_samples = 0
|
||||
window = [w]
|
||||
mov_avg.append(w)
|
||||
|
||||
else:
|
||||
ignored_samples = 0
|
||||
window.append(w)
|
||||
mov_avg.append(mean(window))
|
||||
|
||||
mov_avg = pd.Series(mov_avg)
|
||||
mov_avg_calib = (mov_avg * calib_factor).round(int(params['decimals']))
|
||||
return mov_avg, mov_avg_calib
|
||||
|
||||
Reference in New Issue
Block a user